Surface Area & Volume

Determine if a practical problem involving a	rectangular prism or cylinder represents the ap	oplication of volume or surface area.
	NOTES:	
<u>Surface Area</u> : The surfa of the surfaces added to	ace area of a geometric figur ogether.	e is the total area
Volume: The volume of amount of space inside	f a geometric figure is the me solid figure.	asure of the
SA Wrap Around	How much is needed to cover a 3D object?	Cubic Units
SA Covers (3D Figures)		SA Square Units
How much will an object hold ?	SA Wrapping Paper	V_Filling a cooler with ice
Filling a swimming pool with water	SA Covering a table with a tablecloth	Pouring sand in a sandbox
SA contractor	SA Wranning a hirthday present	V The paint in a gallon can

Directions: Label each scenario below as either Surface Area (SA) or Volume (V).

 Putting water into a swimming pool 	 Wrapping a birthday present with wrapping paper 	3. The lining and cover of a swimming pool	4. The paint held in the gallon paint can
Volume	Surface Area	Surface Area	Volume
5. Remodeling a bedroom using paint and carpet	6. The cardboard of a cereal box.	7. Pouring sand in a sandbox	8. Pouring cement to construct a sidewalk
Surface Area	Surface Area	Volume	Volume

Directions: Calculate the *surface area* for each of the following.

Topic: Determine the volume of rectangular prisms and cylinders using concrete objects, diagrams, and formulas.

NOTES:

VOLUM@: The volume of a geometric figure is the measure of the amount of space inside solid figure.

Cylinder Formula: M = 3.14 $V = \pi r^2 h$ r = radius h = heightVolume = unit³

Rectangular Prism Formula: V = /wh I = length w = width h = height Volume = unit³

Directions: Calculate the volume for each of the following.

Topic: Solve practical problems that require determining the surface area of rectangular prisms and cylinders.
**Keywords have been underlined!
A packaging company needs to know how much <u>cardboard</u> will be required to make boxes <u>18 inches long</u>, <u>12</u> inches wide, and <u>10 inches high</u>. How much <u>cardboard</u> will be needed for each box if there is no overlap in the construction?

Circle one:	SA of a prism	SA of a cylinder	V of a prism	V of a cylinder

1032 in squared

Gasoline is stored in a <u>cylindrical container</u> that has a <u>diameter of 13.8 meters</u> and a <u>height of 4.7 meters</u>.
 Which is closest to the amount of plastic needed to <u>cover</u> the entire container?

Circle one:	SA of a prism	SA of a cylind	er	V of a prism	1	V of a cylinder	
	13.8 m	4.7 m	D	502.65 m sq	uared		
	A 299.14m ²	B 450m ²		C 500m ²	D 502.	65m²	

3. Tim is making a play block for his baby sister by <u>gluing fabric over the entire surface</u> of a <u>foam block</u>. If the <u>length is 6.1 inches</u>, <u>width is 2.3 inches</u>, and <u>height is 2.3 inches</u>, how much <u>fabric</u> will Tim need?

Circle one:	SA of a prism	SA of a cylinder	V of a prism	V of a cylinder

66.7 in squared

4. Find the <u>surface area</u> of the <u>outside of a cylindrical barrel</u> with a <u>diameter of 10 inches</u> and a <u>height of 12 inches</u>.

533.8 in squared

5. Sherri wants to cover a rectangular-shaped box with wrapping paper. Which is closest to the maximum amount of wrapping paper Sherri needs?

Circle or	ne:	SA of a prism	SA of a cyl	inder V of	f a prism	V of a cylind	er	
	63	14.9 yd 7 yd	C 471	.4 yd squared				
	A	235.7yd²	B 292.6yd ²	C 471.4y	rd ² D 62	25.8yd²		
Topic: Solve prac	Topic: Solve practical problems that require determining the volume of rectangular prisms and cylinders.							
1. Fran is many c	given a upcakes	box to <u>put her c</u> s will <u>fit</u> in the b	cupcakes in. Each ci ox?	upcake is 3 inches	long, <u>3 inches wic</u>	le and <u>2 inches</u>	<u>tall</u> . How	
1		Circle one:	SA of a prism S	A of a cylinder	V of a prism	V of a cyline	der	
15 10 0	~		Volume o	f box: 630 in cub	oed			
15 In.	3		Volume of	f cupcake: 18 in	cubed			

6 in.

630 divided by 18 = 35 cupcakes

35 cupcakes can fit in the box.

A can of corn has a diameter of 6.6 centimeters and a height of 9.9 centimeters. How much corn can the can 2. hold?

Circle one:	SA of a r	orism	SA of a cy	/linder	V of a	prism	V of a c	vlinder
en ere one.	5/10/01	3113111	5/10/000	muci	v or u j		• 01 u c	ymaci

338.53 cm cubed

Round to the nearest tenth.

Tracy would like to fill the glass container shown with pasta from a box.

Identify each box of pasta in which the entire content of the box will fit in the glass container.

Volume of glass container: 260.44 in cubed

Nick wants to determine how much ice it will take to fill his cooler. If the cooler has a length of 22 inches, a 4. width of 12 inches, and a height of 10½ inches, how much ice will his cooler hold?

Circle one:	SA of a prism	SA of a cylinder	V of a prism	V of a cylinder	
	2772 in cube				

5. Jenny's box of candy is empty. What is the closest amount needed to fill the box if two pieces of candy each one cubic centimeter?

Circle one:	SA of a prism	SA of a c	/linder V of a pi		V of a prisi	m	V of a cylinder	
	10 cm	3 cm 6 cm	Volui 180 d A 3	me cm 360	of candy box: cubed x 2 = 3 pieces	180 c 60	rm cubed	
А	360 pieces	B 180 pieces		С	38 pieces	D	19 pieces]

3.

Real-World Application:

Mr. & *Mrs. Williams built an elevated garden in March to grow vegetables. The picture below are actual pictures and measurements for the elevated garden.*

<u>Step 1</u>: Calculate the volume of the elevated garden.

Volume = 46176 in cubed

<u>Step 2</u>: Calculate the number of soil bags needed to fill the entire elevated garden.

Store: Lowe's

Miracle-Gro 1.5 ft³ Organic Raised Bed Soil

1 cubic ft = 1728 cubic in

46176 in cubed divided by 1728 cubic in = 26.72 ft cubed

26.72 ft cubed divided by 1.5 ft cubed = 17.81 bags \sim 18 bags

<u>Step 3</u>: Calculate the total price of soil needed to fill the entire elevated garden.

Store: Lowe's \$8.98 per bag

18 bags x \$8.98 = \$161.64 total price