
Learning Packet

Day 1 Monday 5/18/20 Use this video link <u>https://www.youtube.com/watch?v=Ferdzt_m3PU</u> to help you complete the following items. is a change in position
 is what you compare a moving object against.
 Identify 3 ways to measure motion: 4. The tool used to measure speed is the ______ 5. Identify 2 things needed to measure velocity: 6. ______ measures how fast or slow and object travels.
7. Velocity is speed plus ______.
8. ______ is how quickly or slowly an object speeds up, slows down or changes direction.

- 9. How do speed and velocity differ?
- 10. Speed and velocity and interchangeable term except for in science. **True or False**

Day 2 Tuesday 5/19/20

These are formulas to help you do calculations

Practice Problems

1. A runner races in the 100 meter dash. It takes her 10 seconds to finish. What is her average speed?

A. 10m/s B. 1000m/s	C. 100 seconds	D. 10 seconds
---------------------	----------------	---------------

2. Find the velocity of a plane that traveled 3000 miles west in 5 hours.

A. 65 mph west B. 6 mph C. 600 mph west D. 6000 mph west
--

3. How far will a person go if they jog for 2 hours at a speed of 12km/hr?

A. 6 km B. 0.5 km C. 10 k D. 24 km

4. The speedboats increased for 0m/s to 24m/s in a time span of 12 seconds. What is the acceleration?

	A. $4m/s^2$	B. $2m/s^2$	C. 10 km	D. 24 km
--	-------------	-------------	----------	----------

5. Shona cycles at an average speed of 8km/h. How far has she traveled if she cycles for 4 hours?

A. 55km B. 32	c. 43km	D. 32 miles
---------------	---------	-------------

Day 3 Wednesday 5/20/20

<u>Motion Graphs</u>: How to use and read them in physical science. Use the link to help you understand motion graphs.

https://www.youtube.com/watch?v=RM02SnuJ0MY

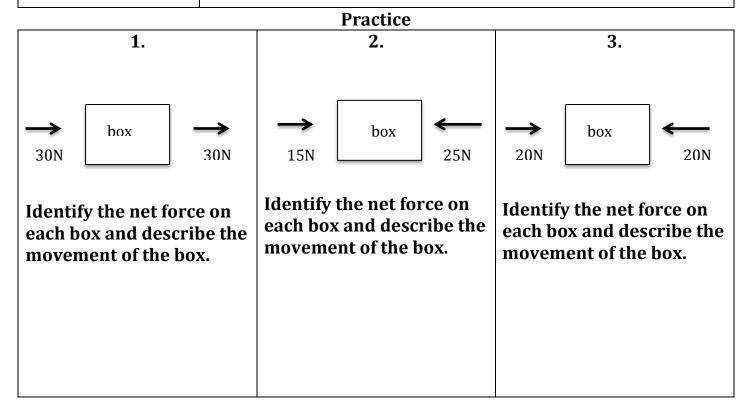
1. The gradient gives you the ______.

Speed	Velocity	Acceleration
-------	----------	--------------

2. A straight line indicates that speed is______.

increasing decreasing constant

3. A flat line indicates that an object is______.


A. stationary B. const	ant speed C. not moving at al	D. A and C
------------------------	-------------------------------	------------

4. A steep line shows______.

5. _____ gradient shows deceleration.

6. _____ can be described as positive or negative.

Day 4 Thursday5/21	<u>/20</u>
Force	
Term	Definition & Example
Force	
Balanced Force	
Unbalanced Force	
Net Force	
Friction	

Day 5 Friday 5/22/20

Work and Machines Notes & Practice Part 1 <u>Work</u> = a force on an object for a distance (the force must be in the same direction as the motion of the object) <u>Examples</u>:

According to the scientific definition of work, which of these best shows that work is being done?

- A A lamp hanging from a ceiling
- **B** A rocket drifting through space
- ${\bf C}~{\bf A}$ man pushing against a concrete wall
- ${\bf D}\,$ A car being towed down a street

For work to be done on an object,

- A the object must not move.
- **B** the object must move, whether or not a force is exerted on it.
- **C** the object must move some distance as a result of a force.
- **D** a force must be exerted on an object--whether is moves is not important.

SI Units

<u>Work</u> = Joules (Newton Meter)

<u>Force</u> = Newton

<u>Distance</u> = Meter

$\frac{Formulas}{Work} = Force \ x \ Distance$ $\frac{Work}{work} = \frac{Work}{work}$

 $\frac{Force}{Force} = \frac{Work}{Distance}$

Examples:

If you exert a force of 20 newtons to push a desk 10 meters, how much work do you do on the desk?

A 10 joules

B 200 joules

- C 30 joules
- **D** 100 joules

It took a bulldozer 62,000 J of work to move a rock 30 meters. How much force did the buildozer have to apply?

- A 2.1 N
- **B** 2066.7 N
- C 206.7 N
- **D** 186000 N

Machine = a device that make work easier

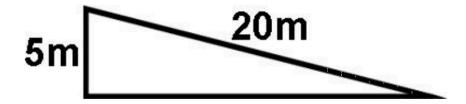
- 1. Changing the amount of force
- 2. Changing the distance
- 3. Changing the direction of the force

Input Force	= You
Output Force	= Machine

Mechanical Advantage (MA) = the number of times the machine multiplies your input force

 $MA = \frac{Output force}{Input force}$

Mechanical Advantage of an incline plane $=\frac{length \ of \ incline}{height \ of \ incline}$


Day 6 Monday 5/25/20 Work and Machines Notes and Practice Part 2 <u>Examples</u>:

The number of times a machine multiples your effort force is called—

- A mechanical advantage
- B work
- C mechanical efficiency
- **D** power

If you exert a force of 20 newtons on a can opener, and the opener exerts a force of 60 newtons on the can, the ideal mechanical advantage of the can opener is -

- **A** 6
- **B** 2
- **C** 3
- **D** 1,200

What is the mechanical advantage of this incline plane?

- A .25
- **B** 5
- C 15
- **D** 4

2 Types of Mechanical Advantage (MA)

1. Actual Mechanical Advantage = friction (less efficient)

2. Ideal Mechanical Advantage = no friction (more efficient)

$Efficiency = \frac{Output work}{Input work} X 100\%$

An ideal machine would be 100% efficient. Machines are not 100% efficient due to friction. Friction can be reduced by lubrication (oil).

Examples:

The work put into a machine is always greater than the work output. This is due to -

- A gravity
- **B** friction
- C power
- **D** work

Efficiency = $\frac{\text{Work Output}}{\text{Work Input}} \times 100\%$

A person in a wheelchair exerts a force of 25 newtons to go up a ramp that is 10 meters long. The weight of the person is 60 newtons and the height of the ramp is 3 meters. What is the efficiency of the ramp?

A	68%	D	60%
B	30%	E	72%
С	80%	F	139%

Day 7 Tuesday 5/26/20 Work and Machines Notes and Practice Part 3

Power

 $Power = \frac{Work}{Time}$

Examples:

The amount of work completed in a certain period of time is called—

- A power
- **B** mechanical efficiency
- C motion
- D mechanical advantage

$$P = W/t$$

To complete a project, 200,000 Joules of work are needed. The time taken to complete the project is 20 seconds. How much power is needed?

- A 200,020 J/s
- **B** 10,000 J/s
- C 0.0001 J/s
- **D** 1,000,000 J/s

It took Bradley 45s and 60N of force to move a sofa 5m into a moving truck. How much power did he exert?

- A 6.67 W
- **B** 12 W
- C 300 W
- **D** 1.33 W

Day 8 Wednesday 5/27/20

Newton's First Law

 Link 1
 http://teachertech.rice.edu/Participants/louviere/NewtLon/law1.html

PPT .../Newton's First Law (Force) PPT 20 (1).pptx

State Newton's 1st Law: _____

List 5 Examples of Newton's 1st Law

1	
2	
3	
4	
5	

Day 9 Thursday 5/28/20

Newton's Second Law

 Link 1
 http://teachertech.rice.edu/Participants/louviere/Newton/law2.html

PPT .../Newton's Second Law.pptx

State Newton's 2nd Law: _____

List 5 Examples of Newton's 2nd Law

1	
2	
3	
4	
5	

<u>Day 10 Friday 5/29/20</u>

Newton's 3rd Law

Link 1	http://teachertech.rice.edu/Participants/louviere/Newton/law3.html	
Link 2	https://emediava.org/lo/1000001771	
PPT	<u>/Newton's 3rd Law.pptx</u>	
State Newton's 2nd Law		

State Newton's 3rd Law: _

List 5 Examples of Newton's 3rdLaw

1	
2	
3	
4	
5	